Seminário em Análise Convexa e Otimização
O Método das Inversas Parciais de Spingarn para Operadores Monótonos (Parte I)
Samara Costa Lima – Doutoranda Pós-MTM/UFSC
Resumo: Sejam A e B dois subespaços multualmente complementares de um espaço de Hilbert H e T um operador monótono maximal em H. O método das inversas parciais, introduzido por J. Spingarn em 1983, é um método iterativo para encontrar x \in A e u \in B tais que u \in Tx. Neste seminário, será apresentado o método das inversas parciais bem como uma versão inexata deste método.
Data – Horário: 15 de setembro – 14:00 h
Local: Sala 202, MTM
E. Krukoski
Tags:
Análise Convexaespaço de HilbertInversas ParciaisMonótonosOperadoresotimizaçãoSpingarnsubespaços
Seminário de Equações Diferenciais Parciais
Propriedades assintóticas para um modelo de evolução com operadores fracionários e coeficiente dependendo do tempo
Cleverson Roberto da Luz – MTM/UFSC
Resumo: <AQUI>
Data – Horário: 14/09/2016 – 15:30
Local: Sala 202 do Departamento de Matemática – CFM/UFSC
E. Krukoski
Tags:
assintóticascoeficientedependendoDiferenciaisEquaçõesfracionáriosmodelo de evoluçãoOperadoresParciais
Seminário em Análise Convexa e Otimização
Operadores Monótonos Maximais e o Método de Ponto Proximal (Parte I)
Expositor: Maicon Marques Alves
Resumo: Pretendo apresentar e discutir alguns aspectos da teoria dos operadores monótonos maximais e suas potenciais aplicações em otimização, enfatizando o papel do método de ponto proximal.
Data: Quinta-feira, 25 de agosto, 14h Local: Sala 202, do Departamento de Matemática
Maiores informações: www.mtm.ufsc.br/~maicon/seminar
E. Krukoski
Tags:
Análise ConvexaMaximaisMétodoMonótonosOperadoresotimizaçãoPontoProximal
Seminário de Equações Diferenciais Parciais
Localização em Operadores de Schrödinger pelo Método dos Momentos Fracionários (Parte II)
Professor Visitante: Roberto de Almeida Prado
Local: Sala 302 do Departamento de Matemática
Dia/Horário: Data: 13/04/2016 / 15:30h
Duração: 1 hora
Resumo: Nesta palestra discutiremos o problema de localização dinâmica para o modelo de Schrödinger Anderson discreto d-dimensional, via o método dos momentos fracionários introduzido por Aizenman e Molchanov em 1993.
Todos estão convidados e agradeço pela divulgação do Seminário de EDP do Departamento de Matemática.
Att.
Prof Jardel M. Pereira
E. Krukoski
Tags:
DiferenciaisEDPEquaçõesMomentosOperadoresParciaisSchrödinger