Colóquio do Departamento de Matemática – 19-03-2021 às 14h:00m
O Colóquio do Departamento de Matemática da UFSC apresenta:
Titulo: The magic of math: three-dimensional X-ray vision
Web-palestra pelo prof. Samuli Siltanen
Samuli é professor do Dep. de Matemática e Estatística da Univ. de Helsinki. Suas principais áreas de interesse científico são: Análise Numérica, Problemas Inversos e Tomografias. É autor de duzias de artigos científicos e ainda de um livro sobre problemas inversos (SIAM, 2012).
http://www.siltanen-research.net/
Também tem interesse em divulgação matemática, e coordena alguns canais no YouTube, incluindo o interessante:
https://www.youtube.com/channel/UCqSbbWIqt9ZhWbAlJgEOGZg
A palestra terá duração de 50min e será transmitida ao vivo pelo YouTube:
https://www.youtube.com/channel/UCEf492F1FZBoGhdioWGytpA/
A audiência eh fortemente encorajada a interagir, enviando perguntas/comentários pelo chat do YouTube
durante a palestra.
———————————————- ———————————————-
Titulo: The magic of math: three-dimensional X-ray vision
Resumo:
X-ray images were invented in the late 19th century and immediately found applications in medicine: bone fractures could be easily seen in radiographs. In the 1970’s a new X-ray based innovation was introduced.
Tomography, or slice imaging, revealed the inner structure of a patient point by point as a three-dimensional map of tissues. This opened up a new world for doctors as they could do precise diagnosing based on these
“CAT-scans.” Tomography is based on recording X-ray images of the patient along many directions, and then using mathematics in a clever way for combining the information into a 3D image. This talk explains
that process in simple terms. An important research topic in modern mathematics is to look for a way to do tomographic imaging with the least possible amount of radiation dose to the patient. This is based on
a process called regularisation. In the final part of the presentation, the classical results are extended to imaging spent nuclear fuel with passive gamma-ray imaging, and to various tomographic applications based
on other probing energies than X-rays.
———————————————- ———————————————-