Seminários de Equações Diferenciais – 16/08/2018 14h:00m

15/08/2018 11:15

Seminários de Equações Diferenciais

“Existence and stability of time-periodic solutions of systems of PDEs including the Navier-Stokes equations”

Palestrante: Jáuber Cavalcante de Oliveira (UFSC)

Abstract: In this seminar, we discuss recent results on the existence and stability of time-periodic solutions of systems of partial differential equations including the Navier-Stokes equations, like the work of C.-H. Hsia et al. (Numer. Math. (2017)) and a very recent result.

Data: Quinta-feira, 16 de agosto, 14h00m
Local: Sala MTM202 do Departamento de Matemática.


E. Krukoski
Tags: Equações DiferenciaisequationsNavier-StokesPDESeminários

Seminário de Equações Diferenciais – 13/12/2016

09/12/2016 19:02

Seminário de Equações Diferenciais

Fast energy decay for wave equations with a localized damping in the n-dimensional half space

Prof. Ryo Ikehata
Universidade de Hiroshima, Japão

We consider a mixed problem for wave equations with a localized damping near spatial infinity in the n-dimensional half space. By constructing a new type of Hardy inequality in the whole space via the Fourier transform, we will derive a fast decay rate of the energy to the odd extension of the corresponding solution. In this case we employ a special type of multiplier method combined with the Hardy type inequality.


Dia – Hora: 13/12/2016 – 15h:30m

Local: Sala MTM007 do Depto. de Matemática


E. Krukoski
Tags: decay rateEquações DiferenciaisFouriern-dimensionalSeminario

Seminário de Equações Diferenciais Parciais – 19-10-2016

18/10/2016 09:45

Seminário de Equações Diferenciais Parciais

Optimal decay rates and asymptotic expansion of solutions to the linearized compressible Navier-Stokes flow

Dr. Ruy C. Charão
Universidade Federal de Santa Catarina


Resumo: In this work, we are concerned with the a linearized Compressible Navier-Stokes. The main purpose of this report is to announce the exact profile of the velocity v(t;x) when t goes to infinity. To get decay rates we use two methods to work on the low and high frequency zone of the Fourier space. The asymptotic profile in Fourier space of the velocity v(t;x) for the compressible fluid we used to prove the optimality of the decay rate in time to the L2-norm of the velocity. Similar properties to the density were obtained by Ikehata-Onodera in 2016.
Dia – Hora: 19/10/2016 – 15:30 horas
Local: Sala 202 do Departamento de Matemática

E. Krukoski
Tags: asymptoticdecay ratesEquações DiferenciaisNavier-StokesParciais